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STRAIGHT SKELETONS

pferd11cm0.722

• Aichholzer, Alberts, Aurenhammer, Gärtner 1995.
• Problem: Given input graph, find the straight skeleton.
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STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).

• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.
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TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

• Wavefront topology changes over time.

• edge event: an edge of WF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.
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APPLICATIONS: ROOF MODELING

image credit: Stefan Huber
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APPLICATIONS: OFFSETTING
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COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.

• Problem: When will the next event happen, and what is it?

• If we solve this, we can incrementally construct the SK.
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TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.
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CONTRIBUTION

• We have implemented this algorithm.
• We filled in gaps in the description of the algorithm.
• The algorithm does not always work when input is not in

general position. We have identified and corrected these
flaws.

• We have run extensive tests using this code.
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FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!
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DETECTING FLIP-EVENT LOOPS

• Keep a history of flip events 〈e1,e2, . . .〉 where each
ei = (ti ,∆i).

• This history can be cleared when we encounter an edge or
split event.

• If we encounter a flip event a second time, we may be in a
flip-event loop.
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HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

v1 vk

v3

v2 v4 v5

e

ve

C(e)

∆e

• This approach also is applicable to kinetic triangulations in
other algorithms.

14



NUMBER OF FLIP EVENTS

• O(n3) is the best known upper bound on the number of flip
events,

• No input is known that results in more than quadratically
many flip events.

• It turns out that for practical data the number of flip events
is very linear.
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NUMBER OF FLIP EVENTS, II
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PERFORMANCE OBSERVATIONS

theoretical worst case practical

runtime space runtime space

E&E1 O(n17/11+ε) O(n17/11+ε) N/A

CGAL2 O(n2 log n) O(n2) O(n2 log n) O(n2)

Bone3 O(n2 log n) O(n) O(n log n) O(n)

Surfer4 O(n3 log n) O(n) O(n log n) O(n)

1Eppstein and Erickson, 1999
2F. Cacciola, 2004
3Huber and Held, 2010
4this, based on Aichholzer and Aurenhammer, 1998
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RUNTIME TESTS
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Runtime and memory usage behavior of CGAL, Bone, and
Surfer for inputs of different sizes.
Bone and Surfer use their IEEE 754 double precision backend.
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SUMMARY

• We have implemented Aichholzer and Aurenhammer’s
algorithm from 1998, filling in details in the algorithm
description.

• We fixed real problems that arise in the absence of general
position.

• Our approach to handling flip events has wider
applications.

• The implementation runs in O(n log n) time for real-world
data. The number of flip events is linear in practice.

• It is industrial-strength, having been tested on tens of
thousands of inputs.

• It is the fastest straight skeleton construction code to date,
handling millions of vertices in mere seconds.
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QUESTIONS

Thank you for your attention.

Questions
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GALLERY: BORDERS OF AUSTRIA
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GALLERY: RANDOM POLYGON
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GALLERY: PCB
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GALLERY: POLYGON WITH HOLE
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GALLERY: CIRCULAR HOLES
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GALLERY: MORE HOLES
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GALLERY: ALMOST POLYGON

27



GALLERY: STAR
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GALLERY: SPIRALS
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APPLICATIONS: GIS

image credit: Stefan Huber
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PSLG
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MEDIAL AXIS VS. SK

VD-based MA SK
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ALTERNATE COMPUTATION

v

e

∆

2.5 3.0
time

−1

0

1

2

f(
ti

m
e)

∆ collapses

33



INFINITELY FAST VERTICES

v1
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∆1

∆2

e1

e2
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w1
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TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?
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Ω FOR FLIP EVENTS

N1
N2

. . .
Nm
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W
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Ω FOR NON-FLIP EVENTS

S(P)

P

Ω(n) edge events

Ω(n) triangles

e1
e2

ek
. . .
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SOLUTION FOR FLIP-EVENT LOOPS WITH EGC

Pick, in order:
• non-flip event → reduces triangles
• longest edge to flip → reduces longest edge (count or

length)
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AFFECTED TRIANGLES, MAX
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AFFECTED TRIANGLES, AVG
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TIME SPENT, PHASES
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MPFR
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