
COMPUTING

STRAIGHT SKELETONS

BY MEANS OF

KINETIC TRIANGULATIONS

Peter Palfrader

October 2013

1



COMPUTING STRAIGHT SKELETONS

BY MEANS OF KINETIC TRIANGULATIONS

1 INTRODUCTION
Definition
Applications

2 TRIANGULATION-BASED ALGORITHM
Basic Idea
Flaws of the original Algorithm
Experimental Results

2



STRAIGHT SKELETONS

pferd11cm0.722

• Aichholzer, Alberts, Aurenhammer, Gärtner 1995.
• Problem: Given input graph, find the straight skeleton.

3



STRAIGHT SKELETONS

• Aichholzer, Alberts, Aurenhammer, Gärtner 1995.
• Problem: Given input graph, find the straight skeleton.

3



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).

• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

4



STRAIGHT SKELETONS – MOTIVATION

• input polygon P emanates wavefront WF(P, t).
• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.

4



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

• Wavefront topology changes over time.

• edge event: an edge of WF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

5



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

• Wavefront topology changes over time.

• edge event: an edge of WF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

5



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

• Wavefront topology changes over time.

• edge event: an edge of WF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

5



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

edge events

• Wavefront topology changes over time.
• edge event: an edge of WF(P, t) vanishes.

• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

5



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

• Wavefront topology changes over time.
• edge event: an edge of WF(P, t) vanishes.

• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

5



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

split event

• Wavefront topology changes over time.
• edge event: an edge of WF(P, t) vanishes.
• split event: wavefront splits into two parts.

• In SK(P), events (topology changes) are witnessed by
nodes.

5



TOPOLGY CHANGES – EDGE- AND SPLIT-EVENTS

split event
edge events

• Wavefront topology changes over time.
• edge event: an edge of WF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

5



APPLICATIONS: ROOF MODELING

image credit: Stefan Huber

6



APPLICATIONS: OFFSETTING

7



APPLICATIONS: OFFSETTING

7



APPLICATIONS: OFFSETTING

7



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.

• Problem: When will the next event happen, and what is it?

• If we solve this, we can incrementally construct the SK.

8



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer 1996, 1998.
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

9



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.

• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

10



CONTRIBUTION

• We have implemented this algorithm.
• We filled in gaps in the description of the algorithm.
• The algorithm does not always work when input is not in

general position. We have identified and corrected these
flaws.

• We have run extensive tests using this code.

11



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

12



DETECTING FLIP-EVENT LOOPS

• Keep a history of flip events 〈e1,e2, . . .〉 where each
ei = (ti ,∆i).

• This history can be cleared when we encounter an edge or
split event.

• If we encounter a flip event a second time, we may be in a
flip-event loop.

13



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

v1 vk

v3

v2 v4 v5

e

ve

C(e)

∆e

• This approach also is applicable to kinetic triangulations in
other algorithms.

14



NUMBER OF FLIP EVENTS

• O(n3) is the best known upper bound on the number of flip
events,

• No input is known that results in more than quadratically
many flip events.

• It turns out that for practical data the number of flip events
is very linear.

15



NUMBER OF FLIP EVENTS, II

102 103 104 105 106

input size (number of vertices)

0

1

2

3

fli
ps

/n
um

v

16



PERFORMANCE OBSERVATIONS

theoretical worst case practical

runtime space runtime space

E&E1 O(n17/11+ε) O(n17/11+ε) N/A

CGAL2 O(n2 log n) O(n2) O(n2 log n) O(n2)

Bone3 O(n2 log n) O(n) O(n log n) O(n)

Surfer4 O(n3 log n) O(n) O(n log n) O(n)

1Eppstein and Erickson, 1999
2F. Cacciola, 2004
3Huber and Held, 2010
4this, based on Aichholzer and Aurenhammer, 1998

17



RUNTIME TESTS

0.01

0.1

1

10

100

1000

103 104 105 106

ru
nt
im
e
(s
ec
on
ds
)

Surfer

BoneCGAL

10MB

100MB

1GB

103 104 105 106

m
em

or
y
us
ag
e

Surfer

BoneCGAL

Runtime and memory usage behavior of CGAL, Bone, and
Surfer for inputs of different sizes.
Bone and Surfer use their IEEE 754 double precision backend.

18



SUMMARY

• We have implemented Aichholzer and Aurenhammer’s
algorithm from 1998, filling in details in the algorithm
description.

• We fixed real problems that arise in the absence of general
position.

• Our approach to handling flip events has wider
applications.

• The implementation runs in O(n log n) time for real-world
data. The number of flip events is linear in practice.

• It is industrial-strength, having been tested on tens of
thousands of inputs.

• It is the fastest straight skeleton construction code to date,
handling millions of vertices in mere seconds.

19



QUESTIONS

Thank you for your attention.

Questions

20



GALLERY: BORDERS OF AUSTRIA

21



GALLERY: RANDOM POLYGON

22



GALLERY: PCB

23



GALLERY: POLYGON WITH HOLE

24



GALLERY: CIRCULAR HOLES

25



GALLERY: MORE HOLES

26



GALLERY: ALMOST POLYGON

27



GALLERY: STAR

28



GALLERY: SPIRALS

29



APPLICATIONS: GIS

image credit: Stefan Huber

30



PSLG

31



MEDIAL AXIS VS. SK

VD-based MA SK

32



ALTERNATE COMPUTATION

v

e

∆

2.5 3.0
time

−1

0

1

2

f(
ti

m
e)

∆ collapses

33



INFINITELY FAST VERTICES

v1

v2

∆1

∆2

e1

e2

w2

w1

34



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

35



Ω FOR FLIP EVENTS

N1
N2

. . .
Nm

E1
E2 . . .

Ek

E1 E2

W

36



Ω FOR NON-FLIP EVENTS

S(P)

P

Ω(n) edge events

Ω(n) triangles

e1
e2

ek
. . .

37



SOLUTION FOR FLIP-EVENT LOOPS WITH EGC

Pick, in order:
• non-flip event → reduces triangles
• longest edge to flip → reduces longest edge (count or

length)

38



AFFECTED TRIANGLES, MAX

102 103 104 105 106

input size (number of vertices)

100

101

102

103

104

af
fe

ct
ed

tr
ia

ng
le

s

in edge events

102 103 104 105 106

input size (number of vertices)

100

101

102

103

104

af
fe

ct
ed

tr
ia

ng
le

s
in split events

39



AFFECTED TRIANGLES, AVG

102 103 104 105 106

input size (number of vertices)

10−1

100

101

102

af
fe

ct
ed

∆
/e

ve
nt

40



TIME SPENT, PHASES

pre-processin
g

tria
ngulation

kinetic
tria

ngulation

initia
l schedule

propagation process

post-p
rocessin

g
0 %

20 %

40 %

60 %

80 %

100 %

ru
nt

im
e

(p
er

ce
nt

ag
e

of
to

ta
l)

41



MPFR

0 1000 2000 3000 4000 5000
MPFR precision (bits)

0

50

100

150

Sl
ow

do
w

n
fa

ct
or

slowdown

0 1000 2000 3000 4000 5000
MPFR precision (bits)

0

10

20

30

40

Bl
ow

up
fa

ct
or

blowup

42


	Introduction
	Definition
	Applications

	Triangulation-based Algorithm
	Basic Idea
	Flaws of the original Algorithm
	Experimental Results

	Appendix

